I.
Título:
“Caída Libre a partir de un electroimán en
lugar de ganchos”.
Ø Aplicación en la Ingeniería
Civil:
Podemos aplicar el sistema de imanes a una
polea, para que así no estemos enganchando o amarrando cada cosa que deseamos
subir o soltar.
II.
Objetivo:
·
O. general:
Determinar los tiempos y
velocidades de un cuerpo sometido al movimiento de atracción gravitacional
(Movimiento de caída libre).
·
O. específico:
§ Comprender las leyes físicas de un cuerpo
sometido a la atracción gravitatoria (Movimiento de caída libre).
§ Demostrar la Caída Libre con el experimento
del electroimán.
§ Comprobar las fórmulas del MVCL.
III.
Problema:
¿En cuánto tiempo un objeto
metálico tocará el piso al ser apartado de un magneto que lo sostiene a un
altura de 1.30 m, y cuál será la velocidad con la que cae; y que velocidad
tendrá después de 2 segundos?
IV.
Hipótesis:
1. Aplicando las fórmulas de MVCL obtendremos la
respuesta correcta.
2. El objeto metálico tocará el piso en menos de
1 segundo.
3. La velocidad del objeto metálico será mayor a
5 m/s2
V.
FUNDAMENTO
TEÓRICO:
La
explicación del movimiento de los cuerpos fue cambiando en la historia junto
con la forma de interpretar otros fenómenos del universo. Las investigaciones
de Aristóteles determinaron durante siglos la forma de ver el mundo. A tal
punto, que hasta mediados del siglo XVI, resultaba inaceptable pensar que la
Tierra se movía y que el Sol no giraba a su alrededor. El atrevimiento de
Copérnico, de afirmar su teoría heliocéntrica refutando la concepción vigente
hasta ese momento, le dio lugar a Galileo para desarrollar sus ideas. Fue este
último quien halló la manera de explicar cómo se mueven los cuerpos
independientemente de su naturaleza, incorporando el concepto de vacío y el de
aceleración de la gravedad.
La
física de Aristóteles está dedicada fundamentalmente al estudio de las causas
eficientes y su relación con el movimiento, y es de carácter intuitivo más que
experimental. Se desarrolla sobre la base de cuatro principios:
1.
Negación
del vacío:
La existencia de
espacios vacíos supondría velocidad infinita por ser ésta inversamente
proporcional a la resistencia del medio. Dentro del esquema aristotélico no
resultaba admisible la existencia de un móvil con esa propiedad.
2.
Existencia
de una causa eficiente en todo cambio:
La causa eficiente se
localizaba en la tendencia generalizada al "propio lugar", que no es
sino la inclinación que todo cuerpo posee a ocupar el lugar que le corresponde
por su propia naturaleza. Esta propensión al "propio lugar" ha sido
interpretada, a veces, como una energía potencial introducida de forma
rudimentaria; en otras, se ha visto como la primera insinuación de un modelo de
acción a distancia, que sería la ejercida por la Tierra sobre los demás
cuerpos.
3.
Principio
de la acción por contacto:
En todos los
movimientos, excepto en los naturales, debe existir como causa eficiente un
agente en contacto con el objeto móvil. Se tomaba como resultado experimental,
aunque aparecían dificultades concretas a la hora de explicar los movimientos
de proyectiles, el magnetismo y las mareas. En los tres casos, el agente
parecía operar a través de la continuidad del medio.
4.
Existencia
de un primer agente inmóvil:
Carece de interés para
el problema de las interacciones.
Para
Aristóteles existían dos tipos de movimientos: el movimiento natural y el
movimiento violento.
El
movimiento natural podía ser hacia arriba o hacia abajo en la Tierra, en donde
los cuerpos pesados (como una piedra) tendían naturalmente a ir hacia abajo, y
los cuerpos livianos (como el humo) tendían naturalmente a ir hacia arriba.
Esto ocurría así porque los objetos buscaban sus lugares naturales de reposo y,
por ser movimientos naturales, no estaban provocados por ninguna fuerza.
El
movimiento violento era un movimiento impuesto, originado por la acción de
fuerzas que actuaban sobre un cuerpo: tiraban o empujaban. Los cuerpos en su
estado natural de reposo no podían moverse por sí mismos, sino que era
necesario aplicarles una fuerza (empujarlos o tirarlos) para que se muevan.
Durante
dos siglos la idea de que la Tierra estaba en su lugar natural de reposo fue
muy aceptada y, ya que ponerla en movimiento requería de una enorme fuerza, lo
más lógico era pensar que la Tierra no se movía, sino que el resto del universo
se movía alrededor de ella. De esta manera, el Sol era el que giraba alrededor
de la Tierra.
En
plena edad media un astrónomo, Copérnico, se atrevió a decir que la idea
antropocéntrica de Aristóteles no era correcta, sino que era la Tierra la que
giraba alrededor del sol.
En
el siglo XVI, Galileo fue el primero en adoptar las locas ideas de Copérnico. Demostró
que la idea de que la Tierra gira alrededor del sol era razonable y que no se
requería de una enorme fuerza para mantenerla en movimiento. Lo importante era
saber cómo se movían los cuerpos, no por qué se movían.
Cuando
dos cuerpos resbalan uno sobre el otro, actúa una fuerza denominada fricción,
la cual se debe a las irregularidades de las superficies de los cuerpos que se
deslizan. Si esta fuerza no existiera, los cuerpos estarían en continuo
movimiento. Galileo demostró que solamente cuando hay fricción se necesita de
una fuerza para mantener a un cuerpo en movimiento, y estableció que todo
cuerpo material presentaba resistencia a cambiar su estado de movimiento,
siendo esta resistencia la inercia.
Este
concepto de inercia se contraponía con la idea de movimiento de Aristóteles.
Para mantener a la Tierra moviéndose alrededor del sol es necesaria una fuerza
(gravitación), no es necesaria ninguna fuerza extra para que conserve su
movimiento, ya que en el espacio del sistema solar no hay fricción porque hay
vacío.2
En
el caso de un cuerpo que se mueva en caída libre con un movimiento rectilíneo,
para Galileo la aceleración de ese cuerpo no dependía de la masa del mismo, y
esta idea constituía un cambio de paradigma en el mundo de la física, por
oponerse a la idea de Aristóteles.
La
mecánica de Newton describe cómo las fuerzas producen movimiento:
1.
La
proporcionalidad entre la intensidad de la fuerza y la aceleración (segunda
ley).
2. La ley de inercia
(primera ley) por la cual un cuerpo se mantiene en su estado de movimiento si
no actúan fuerzas sobre el mismo.
3. El principio de
acción y reacción (tercera ley), por el que la fuerza que ejerce un cuerpo sobre
un segundo cuerpo es igual y de sentido contrario al que ejerce el segundo
sobre el primero.
La
teoría de la gravitación estudia la naturaleza de las fuerzas asociadas con los
corpúsculos, son fuerzas atractivas y centrales, es decir, actúan según la
recta que determinan sus respectivos centros. Newton estableció la variación
cuantitativa de esta fuerza: resultaba ser directamente proporcional al
producto de sus masas, e inversamente proporcional al cuadrado de la distancia
que separa los centros de los cuerpos.
MOVIMIENTO DE CAÍDA LIBRE
El movimiento de los
cuerpos en caída libre (por la acción de su propio peso) es una forma de
rectilíneo uniformemente acelerado.
La distancia recorrida
(d) se mide sobre la vertical y corresponde, por tanto, a una altura que se
representa por la letra h.
En el vacío el
movimiento de caída es de aceleración constante, siendo dicha aceleración la
misma para todos los cuerpos, independientemente de cuales sean su forma y su
peso.
La presencia de aire
frena ese movimiento de caída y la aceleración pasa a depender entonces de la
forma del cuerpo. No obstante, para cuerpos aproximadamente esféricos, la
influencia del medio sobre el movimiento puede despreciarse y tratarse, en una
primera aproximación, como si fuera de caída libre.
La aceleración en los
movimientos de caída libre, conocida como aceleración de la gravedad, se
representa por la letra g y toma un valor aproximado de 9,81 m/s2 (algunos usan solo el valor 9,8 o redondean
en 10).
Si el movimiento considerado es de descenso o
de caída, el valor de g resulta positivo como corresponde a una auténtica
aceleración. Si, por el contrario, es de ascenso en vertical el valor de g se
considera negativo, pues se trata, en tal caso, de un movimiento decelerado.
Ø Para resolver problemas
con movimiento de caída libre utilizamos las siguientes fórmulas:
Vf= V0
+ g . t … Ecuación 1
T=
Vf – V0 … Ecuación 2
g
Vf2=
V02 + 2g . h … Ecuación 3
h = V0 . t +
1 g . t2 … Ecuación
4
2
Vn= Vi ± g (2n – 1) … Ecuación
5
Ø Recuerda que cuando se
informa que “Un objeto se deja caer” la velocidad inicial será siempre igual a
cero (v0 = 0).
Ø En cambio, cuando se
informa que “un objeto se lanza” la velocidad inicial será siempre diferente a
cero (vo ≠ 0).
Movimiento de subida o de tiro vertical:
Al igual que la caída
libre, este es un movimiento uniformemente acelerado.
Tal como la caída
libre, es un movimiento sujeto a la aceleración de la gravedad (g), sólo que
ahora la aceleración se opone al movimiento inicial del objeto.
A diferencia de la
caída libre, que opera solo de bajada, el tiro vertical comprende subida y
bajada de los cuerpos u objetos y posee las siguientes características:
- La velocidad inicial
siempre es diferente a cero.
- Mientras el objeto
sube, el signo de su velocidad (V) es positivo.
- Su velocidad es cero
cuando el objeto alcanza su altura
máxima.
- Cuando comienza a
descender, su velocidad será negativa.
- Si el objeto tarda,
por ejemplo, 2 s en alcanzar su altura máxima, tardará 2 s en regresar a la
posición original, por lo tanto el tiempo que permaneció en el aire el objeto
es 4 s.
- Para la misma
posición del lanzamiento la velocidad de subida es igual a la velocidad de
bajada.
Otra explicación:
Ø Conceptos fundamentales
de la Caída Libre:
1.- Línea vertical:
En caso de tomar una superficie no muy grande, es aquella línea recta,
radial a un planeta.
2.- Movimiento vertical:
Cuando se suelta un cuerpo a
una determinada altura, este cae a través de la vertical; produciéndose un
movimiento llamado “Movimiento Vertical”. Si es lanzado hacia arriba también
describe una trayectoria vertical, produciéndose también “Movimiento Vertical”.
En nuestro planeta los
cuerpos cercanos a ella caen, porque la Tierra ejerce atracción sobre los cuerpos próximos a la superficie con una
fuerza llamada peso.
La atracción de la Tierra
produce una aceleración en los cuerpos.
3.- Aceleración de la
Gravedad (G):
En aquella acelerecaión con
la que caen cuerpos. Su valor depende
íntegramente del lugar donde se tome.
Si consideras la fricción
del aire, cuando un cuerpo es soltado el peso de este cuerpo produce en él una
fina aceleración, independiente de su masa, esta aceleración es aproximadamente
g=9,8 m/s2 es la superficie terrestre.
-En los polos alcanza su
mayor velocidad:
9,93 m/s2
gravedad polar.
-En el Ecuador alcanza su
menor valor:
ge=9,79 m/s2 gravedad euatorial.
-A la latitud 45° norte y al
nivel del mar se llama aceleración normal:
Gn=9,81 m/s2
gravedad normal.
Si
un tipo se asoma a la ventana de su casa y deja caer una moneda una pluma o un
elefante, estos tres objetos son afectados por la misma aceleración de 9.8
m/s2. Si suponemos que no hay resistencia del aire, entonces estos tres objetos
caerán al suelo al mismo tiempo.
¿Quién
descubrió esto? Sin duda. Galileo Galilei.
Este
hecho es medio raro pero es así. En la realidad, una pluma cae más despacio que
una moneda por la resistencia que opone el aire. Pero si se saca el aire, la
pluma y la moneda van a ir cayendo todo el tiempo juntas.
Experiencia
de Newton
|
|
Al soltar
simultáneamente una pluma y una piedra en el aire, la piedra llega primero
que al pluma, puesto que sobre esta última el aire ejerce mayor resistencia
(por su mayor superficie), por lo tanto se puede afirmar que la Fricción del
aire retarda la caída de la pluma.
|
Al soltar
simultáneamente una pluma y una piedra en el vacío ambos llegan al mismo
tiempo, puesto que sobre ambos no existe ninguna resistencia, por lo tanto
caen con la misma aceleración. Deduciéndose que en el vacío la piedra y la
pluma caen juntas.
|
Esta
aceleración con la que caen las cosas hacia la Tierra se llama aceleración de
la gravedad. Se la denomina con la letra g y siempre apunta hacia abajo. En el caso de la moneda que
cae yo puedo ajustar al problema y lo que tendría sería un objeto que acelera
con aceleración 10 m / s 2
Es decir que un
problema de caída libre no se diferencia para nada de un problema de MRUV. Es más,
la caída libre es un
MRUV.
Para
resolver los problemas de caída libre o tiro vertical puedo aplicar los mismos
razonamientos y las mismas ecuaciones que en MRUV. Todo lo mismo. La única
diferencia es que antes todo pasaba en un eje horizontal. Ahora todo pasa en un
eje vertical. Lo demás es igual.
El
movimiento vertical de cualquier objeto en movimiento libre (Caída libre), se
puede calcular mediante las fórmulas de caída libre que son las
siguientes:
·
Cuando el cuerpo es lanzado hacia
abajo se utiliza el signo positivo (+).
·
Cuando el cuerpo es lanzado arriba se utiliza el signo negativo (+).
¿Porque
si el cuerpo es lanzado hacia abajo se utiliza el signo positivo y si es
lanzado hacia arriba el signo negativo?
Muy sencillo, piensa que si el
objeto está cayendo, la fuerza de gravedad (g) hace que aumente cada vez más su
velocidad, lo que hace que la velocidad final Vf sea mayor, por eso se pone. Vf
=Vi + gt.
Si el objeto sube, la gravedad
actúa en su contra disminuyendo la velocidad del objeto, en este caso será el
signo -, ya que la velocidad del objeto con el paso del tiempo irá
disminuyendo. Vf = Vi - gt
Luego el signo menos de la
gravedad depende si el cuerpo sube o baja.
En caída siempre será + en la
velocidad.
Ahora
veamos la de la distancia recorrida por el objeto:
E = Eo
+ Vo * t - 1/2 gt² Aquí pondremos el signo – porque si soltamos el
objeto desde una altura, la gravedad hará que recorra menos espacio, en el
mismo tiempo, porqué la gravedad en el caso de caída acelera el cuerpo.
Pero además en caída libre E
(espacio recorrido por el cuerpo) será la altura desde donde soltamos el
cuerpo, hasta llegar al suelo, donde la altura será cero. Según lo dicho
podemos transformar la fórmula para caída libre a la siguiente fórmula.
h
= Vi t +- 0.5 gt² … Ecuación 6
(Recuerda
que 0.5 = 1/2)
Ojo: Si el objeto lo soltamos desde una
altura, su Vo= 0 y la altura final (el suelo) será Y= 0.
Otra
fórmula es:
Vf² =
Vi² +- 2gh … Ecuación 3
Esta
fórmula la usaremos cuando no nos dan el tiempo.
Resumen:
Vf
es velocidad final, g la gravedad (en la tierra 9,8m/s, se puede aproximar a
10), Vi velocidad inicial, Vm velocidad media, t es el tiempo, la h
es la altura final (si cae en el suelo será cero).
Ø Las Ecuaciones
Dinámicas en Caída Libre son las siguientes:
Vf² = Vi² +- 2gh
Vf² = Vi² +- 2gh
·
h = Vi t – ½ g t² h = ½ (V + Vo) t … Ecuación 4
·
Vf= Vi +– g t … Ecuación 1
¿Y qué pasa con el tiro
vertical?
Y bueno, con el tiro
vertical es la misma historia. Tiro vertical significa tirar una cosa para
arriba.
Ø
Analicemos a detalle el tercer caso de Caída Libre:
En este diagrama se muestra
un movimiento completo de Caída Libre (subida y bajada) donde se cumple:
1° En la altura máxima, la velocidad del móvil o cuerpo es igyal a cero: Vc=0
2° A un mismo nivel la
velocidad de subida es igual a la
velocidad de bajada: VA=VE Y VB=VD
3°
Entre dos niveles el tiempo de subida es igual al tiempo de bajada: TAC=TCE
/ TBC =TCD / TAB = TDE
Conclusión del
fundamento teórico:
-Los cuerpos caen
porque la tierra los atrae.
-Las fuerzas de
atracción (pesos) son diferentes.
-En el vacío, los
cuerpos caen con la misma aceleración a pesar de que sus masas sean diferentes.
I.
METODOLOGÍAS Y
TÉCNICAS:
Ø Materiales:
-Un encendedor
-Una pila tamaño A
-Un perno grande de
tres pulgadas
-Dos metros de hilo de
cobre
-Cinta aislante
-Llave de metal
Ø Presupuesto:
MATERIAL
|
COSTO
|
Un encendedor
|
Un nuevo
sol
|
Una pila tamaño A
|
Un nuevo
sol
|
Un perno de tres pulgadas
|
Tres
nuevos soles
|
Tres metros de hilo
de cobre
|
Tres
nuevos soles
|
Cinta aislante
|
Tres
nuevos soles
|
Llave de metal
|
----------------------
|
TOTAL
|
Once
nuevos soles
|
Ø Procedimiento para
elaborar un electro imán:
Comencemos por lo más elemental. Un electro imán es un dispositivo que funciona con corriente eléctrica y que
genera un campo magnético. Trabaja de acuerdo al principio de que la corriente
eléctrica no solo permite que los electrones fluyan en un circuito, sino que
también es capaz de generar un campo magnético.
En este dispositivo
hay un alambre o un cable enrollado, lo que hace que el campo magnético sea más
potente. Los objetos de hierro o metal que están enrollados por este cable son
consecuentemente imantados. La combinación de energía eléctrica, el cable en espiral
y un material conductor, forman el dispositivo que conocemos como electro imán.
Para construir un
electroimán debes enrollar
el cable alrededor del clavo en forma de espiral, procurando que no se
superponga y dejando 20 cm. libres en cada extremo del clavo. Si es necesario,
cortar el cable para que no haya más de 20 cm. en cada una de las puntas.
Quitar aproximadamente 2 cm del recubrimiento plástico del cable en cada
extremo o quemarlos con un encendedor por 5 segundos y colocar cada uno de
éstos en la batería (en cada polo). Acerca la punta del clavo a las llaves
metálicas y observa qué sucede.
Ø Procedimiento para resolver el problema:
¿En cuánto tiempo un objeto metálico tocará el piso al ser apartado de
un magneto que lo sostiene a un altura de 1.30 m, y cuál será la velocidad con
la que cae; y que velocidad tendrá después de 2 segundos?
Vf= V0
+ g . t … Ecuación 1
T=
Vf – V0 … Ecuación 2
g
Vf2=
V02 + 2g . h … Ecuación 3
*Para hallar el tiempo (ecuación 2):
T = Vf – 0
9.8
*Para hallar la velocidad final
(ecuación 3):
Vf2=
(0)2 + 2(9.8) x 1.3
Vf2=
0 + 19.6 x 1.3
Vf2=
25.48
Vf =
5.05 m/s2
*Para hallar la velocidad
después de 2 segundos (ecuación 1):
Vf = 0 + 9.8
x 2
Vf = 19.6
m/s2
*Con lo hallado
anteriormente hallar el tiempo en que el objeto metálico tocará el piso:
T = Vf – 0
9.8
T = 5.05 – 0
9.8
T = 0.52 segundos
I.
RESULTADOS:
Al aplicar las fórmulas
de Caída Libre en el problema propuesto, se obtuvieron los siguientes
resultados:
1.
El
objeto metálico tocará el piso en 0. 52 s.
2.
La
velocidad final del objeto será 5.05 m/s2
3.
La
velocidad final después de dos segundos será 19.6 m/s2
II.
CONCLUSIONES:
Ø Se puedo hallar el
tiempo y la velocidad con que cae un objeto metálico de un electroimán
aplicando las fórmulas del movimiento en Caída Libre.
Ø Las hipótesis
planteadas eran correctas.
III.
BIBLIOGRAFÍA:
Pino, F. (30 de noviembre de 2015). Cómo hacer un
electroimán. Recuperado de:
http://www.batanga.com/curiosidades/2011/02/16/como-hacer-un-electroiman
Cano, C. (29 de noviembre de 2015). Movimiento de caída libre.
Recuperado de: http://www.profesorenlinea.cl/fisica/Movimiento_caida_libre.html
Mendoza Dueñas, Jorge.
Física. Ed. 8°. Lima – Perú. Terra. 2002. Pp. 118-119
Public Cmaps (28 de noviembre de 2015). Caída Libre y tiro
vertical. Recuperado de: http://cmapspublic.ihmc.us/rid=1HYRXJK80-1V7J3JS-2DR/T1-3.pdf
IV.
ANEXOS:
Anexo 01:
Valores de la gravedad
Anexo 02:
Gráfica de Caída Libre
Anexo 03: Diferencia entre soltar y lanzar un cuerpo
No hay comentarios:
Publicar un comentario